Calculation policy: Addition

Keylanguage:sum, total, partsand wholes, plus, add, altogether, more, 'isequal to' is the sameas'.

Concrete

Combiningtwo partstomakeawhole(useother
resourcestooe.g. eggs, shells, teddy bears, cars).

Counting on using number lines using cubes or images

Pictorial
Children to represent the cubes using dots orcrosses. They could put each part on a part whole model too.

A bar model which encourages the children to count on, rather than count all.

Abstract
$4+3=7$
Four is a part, 3 is a part and the whole is seven.

The abstract number line: What is 2 more than 4?
Whatisthesumof2and4?
What is the total of 4
and2? $4+2$

Regroupingtomake 10; usingtenframes and counters/cubes. $6+5$	Children to draw the ten frame and counters/cubes.	Children to develop an understanding of equality e.g. $\begin{aligned} & 6+\square=11 \\ & 6+5=5+\square \\ & 6+5=\square+4 \end{aligned}$
TO+O using base 10. Continue to develop understanding of partitioning and place value. $41+8$	Children to represent the base 10 e.g. lines for tens and dot/crosses for ones.	$\begin{aligned} & 1+8=9 \\ & 40+9=49 \end{aligned}$ $+\begin{array}{r} 41 \\ \hline 49 \\ \hline 49 \end{array}$
TO + TO using base 10. Continue to develop understanding of partitioning and place value. $36+25$	Children to represent the base 10inaplacevaluechart.	Looking for ways to make 10.

Conceptual variation;differentwaystoask childrento solve21 +34

Word problems:
Inyear3, thereare 21 childrenandin year 4, there are 34 children. How many children in total?
$21+34=55$. Prove it

```21
```\(+34\)
\[
21+34=
\]
\[
\text { | }=21+34
\]

Calculate the sum of twenty-one and thirty-four.

\section*{Calculation policy:Subtraction}

\section*{Concrete}

\section*{Physically taking away and removing objects from a whole (tenframes, Numicon, cubes and other items such as} beanbags could beused).

Counting back (using number lines ornumbertracks) children start with 6 and count back 2 .
\(6-2=4\)

\section*{Pictorial}

Children to draw the concrete resources they are using and cross outthe correctamount. Thebarmodel can also be used.

\section*{Q Q®O}

Children to represent what they see pictorially e.g.

\section*{Abstract}

4-3 =
\(\left.\right|^{--\mid}=4-3\)

Childrento representthecalculation on a numberlineor numbertrack and show theirjumps. Encourage children to use an empty number line

Finding the difference (using cubes, Numicon or Cuisenaire rods, other objects can also be used).

Calculate the difference between 8 and 5 .

Making 10 using ten frames.
14-5

Column method using base 10 .
48-7

Children to draw the cubes/other concrete objects which they have used or use the bar model to illustrate what they need to calculate.

Children to present the ten frame pictorially and discuss what they did to make 10 .

Children to represent the base 10 pictorially.

Find the difference between 8 and 5 .
\(8-5\), the difference \(\square\)
Children to explore why \(9-6=8-5=7-4\) have the same difference.

Children to show how they can make 10 by partitioning the subtrahend.

\(14-4=10\)
\(10-1=9\)
Column method or children could count back 7 .

Column method using placevalue counters.
234-88

Represent the base 10 pictorially, remembering to show the exchange.

Representtheplacevaluecounters pictorially; remembering toshow what has beenexchanged, moving to expanded method.

Formal column method. Children must understand that when they have exchanged the 10 they still have 41 because \(41=30+11\).

Formal colum method. Children must understand what has happened when they have crossed out digits.
234
- 88

6

\section*{Conceptual variation; dififerent ways to ask children to solve 391 186}

Flixton Primary School
Calculation Policy

Raj spent \(£ 391\), Timmy spent \(£ 186\). How much more did Raj spend?

Calculate the difference between 391 and 186.

391
-186

What is 186 less than 391 ?

Missing digit calculations

\section*{Calculation policy:Multiplicatio}

Key language: double, times, multiplied by, the product of, groups of, lots of, equal groups.

When children start to multiply \(3 \mathrm{~d} \times 3 \mathrm{~d}\) and \(4 \mathrm{~d} \times 2 \mathrm{~d}\) etc., they should be confident with the abstract:
To get 744 children have solved \(6 \times 124\).
To get 2480 they have solved \(20 \times 124\).

Answer: 3224

\section*{Conceptual variation;differentwaystoask childrentosolve \(6 \times 23\)}

\(?\)

What is the calculation? What is the product?
\begin{tabular}{|c|c|c|}
\hline 100s & 10s & 1s \\
\hline & & \[
\begin{aligned}
& \hline 00 \\
& 000 \\
& 0.08 \\
& \hline 080 \\
& 000 \\
& \hline
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{Calculation policy:Division}

Keylanguage: share, group, divide, divided by, half.

\(2 \mathrm{~d} \div\) 1d with remainders usinglollipop sticks. Cuisenaire rods, above a ruler can also be used.
\(13 \div 4\)
Use oflollipopstickstoformwholes-squares aremade because we are dividing by 4 .

There are 3 whole squares, with 1 left over.
Sharing using place value counters.
\(42 \div 3=14\)
000000
\begin{tabular}{|c|c|c|c|}
\hline 10s & 1s & 10s & 1 s \\
\hline & & - & \\
\hline & & \(\bigcirc\) & \\
\hline & & \(\bigcirc\) & \\
\hline & & 0000 & \\
\hline 10s & 1s & 10s & 1s \\
\hline \(\bigcirc\) & 0000 & \(\bigcirc\) & \\
\hline \(\bigcirc\) & 0000 & \(\bigcirc\) & \\
\hline \(\bigcirc\) & 0000 & \(\bigcirc\) & \\
\hline
\end{tabular}

Childrentorepresentthelollipopstickspictorially. \(\begin{aligned} & 13 \div 4-3 \text { remainder } 1\end{aligned}\)

There are 3 whole squares, with 1 left over.

Children to represent the place value counters

Children should be encouraged to use their times table facts; they could also represent repeated addition on a number line.
'3 groups of 4 , with 1 left over'

Children to be able to make sense of the placevaluecounters andwritecalculationsto show the process.
\[
\begin{aligned}
& 42 \div 3 \\
& 42=30+12 \\
& 30 \div 3=10 \\
& 12 \div 3=4 \\
& 10+4=14
\end{aligned}
\]

1. Make 615 with place value counters.
2. How many groups of 5 hundreds canyou make with 6 hundred counters?
3. Exchange 1 hundred for 10 tens.
4. How many groups of 5 tenscan you makewith 11 ten counters?
5. Exchange 1 ten for 10 ones.
6. How many groups of 5 ones can you make with 15 ones?

Long division using place value counters
\(2544 \div 12\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline 1000s & 100s & 10s & 1s & \multirow{3}{*}{We can group 24 hundreds into groups of 12 which leaves with 1 hundred.} & 02 \\
\hline & & -000 & -000 & & \[
\begin{gathered}
1 2 \longdiv { 2 5 } 5 4 4 \\
\quad 24 \\
\hline
\end{gathered}
\] \\
\hline & Cocee & & & & 1 \\
\hline
\end{tabular}
```

